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MIRroOSLAY FIEDLER, Praha
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~ A theorem relating the eigenvectors of a nonnegative symmetric matrix 4 with
the degrees of reducibility of some principal submatrices of 4 is proved and applied

_in the theory of algebraic connectivity of non-directed graphs.

N X n matrix and M a proper nonvoid subset of N, we shall denote by A(M) that
| principal submatrix of A the indices of the rows (and columns) of which belong to M.
~ The transpose matrix to 4 wi]] be denoted by AT, the identity matrix by I. A vector
| s always considered as a column vector., By the inner product of two vectors x and V,
denoted by (x, y), we mean as usual the number yTx. In the third section, e will
always mean the vector (1,1, .., 1)T, with n ones.

. Asusual,an n x 5 matrix 4 = (a,) is called irreducible if for no decomposition
, ,’,Vof_N into two non-void subsets N, N3, a; = 0 whenever ieNy, keN,. We shall
investigate here the case of Symmetric real matrices only. For such matrices, we shall
-~ speak about degree of reducibility in the following sense:

'jA Symmetric n x n matrix 4 — (ay)is of degree of reducibility s, 0 < s =n-—1
there exists 2 decomposition of N into s + 1 non-void subsets N = N 1tYN, U ...
U N, such that

() A(N)) are irreducible, i = 1, .. 5 4 1,
(i) dpq = 0 whenever PEN,qeN, i=+j
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This means, of course, that there exists an n x n permutation matrix P such that
PAPT has the block-diagonal form

TA(N,) 0 .0
0 AN, ...0

o ANy ]

An irreducible symmetric matrix is thus of degree of reducibility zero.

Given a symmetric matrix A, we shall define its signature s(A) as the row vector
s(4) = (p, q) where p denotes the number of positive and g the number of negative
eigenvalues of A. The following result is classical:

(1,1) If A, is a principal submatrix of a symmetric matrix A then s(4;) < s(A).
A very easy consequence of this result is the following assertion:

(1,2) Let A be an n x n symmetric matrix, A, = A, = ... > A, its eigenvalues.
Then no principal submatrix of the matrix A — A (s=1,..., n) has more than
s — 1 negative eigenvalues.

We shall also need the notion of M-matrices or, equivalently, of matrices of class K.

Let us recall (cf. [2]) that a real square matrix 4 belongs to the class K (or K,,
respectively) iff all off-diagonal entries of A4 are nonpositive and all principal minors
of A4 are positive (or nonnegative, respectively).

The following assertions have been proved in [2] and [7]:

(1,3) A matrix from K, belongs to K iff it is nonsingular.

(1,4) If AeK then A= = 0. If AeK is irreducible then A~* > 0.

(],,5) If AeK, is irreducible and singular then zero is a simple eigenvalue
of A, there exists unique real vector (up to a factor) u + 0 such that Au = 0, and
this vector is either positive, or negative. -

For symmetric matrices, from the definition of class K or K, and the properties
of positive definite or semidefinite matrices follows immediately: '

(1,6) A symmetric matrix belongs to K( or Ko, respectively) iff all its off-diagonal
entries are nonpositive and all its eigenvalues positive (or nonnegative, respectively).

From (1,6) and (1,5), the following assertion follows immediately:

(1,7) If A symmetric irreducible has all off-diagonal entries nonpositive and

Az = 0 for a real vector z #+ 0 which is neither positive nor negative then A is
not positive semidefinite.

2. Matrix-theoretical results. We shall prove first the following theorem:

(2,1) Theorem. Let A be an n x n nonnegative irreducible symmetric matrix
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with eigenvalues 1, > Ay Z...2 4, Let v = (v;) be a column vector such that

~ for a fixed seN, s > 2, Ay = Ao.

If M={ieN|v, =0} then M is non-void and the degree of reducibility of
the matrix A(M) does not exceed s — 2.

Proof. Suppose first that M is void. Then v < 0 and the vector z — —v satisfies
z > 0 and
(1) Az < Az

Since 1,1 — A €K, by (1,6) and is irreducible, there exists by (1,5) — or, of course,
by the Perron-Frobenius theorem [5] — a vector u > 0 such that A"u = Au, or
equivalently,

uT™d = Ju” .
Then

uTdz = Ju"z > juT7

_since 2, is simple by (1,5). However, by (1)

uTAdz < AuTz

which is a contradiction. Thus M =+ 0.

If M = N, the theorem is true. Thus let ) = M + N and suppose that the degree
of reducibility of A(M) is at least s — 1. Without loss of generality, we can assume
that M = {1, .., m}, m < n, and that

A - All’ 0, ’ O: Al,r+1 {
O, AZZ’ ’ 03 AZ,r+l
O’ 0’ > Arra Ar,r+1
T T T
_Al,r+ 1> A2,r+1 ] Ar,r+1’ Ar+1,r+1_

where r = s and Ay, i=1,...,r, are irreducible, the sum of their dimensions
being m. If the vector v is partitioned conformally,

v =] oW
U(Z)
p®
—U(r+l)_
then
(2 v >0, i=1,..,r, o**D <.
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According to the assumption in the theorem,

3) (A — AT )vP 2 =AY, i=1,.,r.
Since
_)‘SII - All N
| A’slr - Arr_

is a principal submatrix of AJ — 4, it follows from (1,2) that it has at most s — 1
negative eigenvalues. Thus at least one of the matrices AJ; — Ay, say Ady — Ay,
has nonnegative eigenvalues only. By (1,6), AJ; — A;; €K, and is irreducible.
Suppose first that AJ; — A,, is nonsingular. Then it belongs to K by (1,3) and its

inverse is positive by (1,4). Since (3) and (2) imply
(4) ('lsll - An) il < A1,r+1v(r;l) <0,

it follows that
T = (1511 - Au)—l Al,r+1v('+?’ <0.

Consequently, v =0 by (2) and A, ,,,v*"" =0 which implies A; .+, =0.
This is a contradiction to irreducibility of A.
Thus AJ, — A,, is singular. By (1,5), there exists a vector u™ > 0 such that

() uDT(LT, — A4,,) = 0.

Thus
u(l)T(ASI] . 4‘411) U(l) = 0 .

Since
(Ady — A1) vV =0

by (4), it follows that
()"SII - All) v(l) = 0 .

By (4), Ay ,+0"*"" = 0 so that, by (2), 4;,+1 =0, 2 contradiction. The proof 1

complete.
From this theorem, two corollaries follow:

(2,2) Corollary. Let A be an n x n nonnegative irreducible, symmetric matrix
with eigenvalues Ay = A, = ... 2 A,. Let seN, s = 2 and let v = (v,—) be any
eigenvector corresponding to A. Then M = {ieN | v; = 0} is non-void and the
degree of reducibility of A(M) does not exceed s — 2.
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; (2,3) Corollary. Let A be an n x n nonnegative irreducible, symmetric matrix
jth eigenvalues 1y 2 A, > ... > 1,. Let u = (u;) > 0 be an eigenvector cor-
| responding to iy and v = (v;) an eigenvector corresponding to i,. Then for any
4 2 0, the submatrix A(M,) is irreducible where M,={ieN , v; + au; = 0}.

~ The proof of (2,2) being immediate, (2,3) follows from (2,1) since v + au satisfies
the assumption for s = 2.

. In the sequel, we shall also use (in different terminology) the following lemma
- which was proved in [4] (as Lemma (1, 12)):

(2.4) Lemma. Let

A= [B c]
108t 5 — ] " d
I, - f411, l be an n X n partitioned symmetric matrix, B an (n — 1) x (n — 1) matrix. If,
reducible, for some vector u,
3)andits | Bu=0, c"u#0
‘jft»hen ‘
s(4) = s(B) + (L1).

s _»3 Applications in the graph theory. In this section, under a graph we shall always
understand a nondirected finite graph without loops and multiple edges. We shall
denote the vertices of such a graph G by numbers, usually 1, 2, ..., n, and the set of

1 ~ 0. | vertices will then be denoted by N. Thus G = (N, E), E being the set of edges (i, k)
N ® Pre)o

of G (unordered pairs of different indices of N)

ch that - Under a cut in the graph G we shall understand, as usual, a set of edges C to
| Wthh a decomposition N = (N, N,) of the vertex set N of G exists (ie. Ny #0 +
#N;, NyUN,; =N, N, nN, = 0) such that C consists exactly of all edges in G
{ with one vertex in N, and the other in N 2. We shall call bank of the cut each of the
"subgraphs of G induced by the subsets N; and N,.

- It is clear that in this definition, the decomposition N = (Ny, N,) may not be
3 umquely determined by the cut C. However, it is easy to prove the following assertion:
- (3,1) Let C be a cut in a graph G. If there is a decomposition N = (N4, Ny)

tof the vertex set N of G corresponding to C such that both corresponding banks
i are connected then the decomposition of N corresponding to C is unique.

IfGisa graph, it is well known [5] that on its edge set E an equivalence relation R
he proof is can be defined as follows: If e, € E, e, € E then e, Re, iff there is a simple circuit in G
[contammg both edges e, and e,. Let E = E; UE, U ... U E, be the decomposition

of E into classes of equivalence with respect to R. The subgraphs G; (i = 1, ..., 1)
~ OfG consisting of all edges in E; and of all vertices adjacent to them will be called
tric matrix bIocks of G. As is well known, vertices in common to more than one such block are
v;) be any points' of articulation of G. We shall say that two such points of articulation are
id and the nelghbourmg if there exists a block of G to which both of them belong. The following
sertion is well known [6]:
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(3,2) Let G be a connected graph, By, B, its two different blocks. Then there g
a unique sequence py, ..., p; (s = 1) of points of articulation such that p, e B,,
ps€ B, and p, py,, are neighbouring fork = 1,...,s — 1.

To a graph G = (N, E), a matrix A(G) which we shall call Laplacean of G (in
accordance with Anderson [1]), is assigned as the matrix of the quadratic form

(AG)x,x) = ¥ (x; — x)? .

(i,k)eE

Thus, A(G) = (a;) where

a,-k =5 —1 (=a,“-) if i #: k and (i, k)EE,
a; = — Z Air s i, k eN .

k*i

In [3], the algebraic connectivity a(G) of the graph G was defined as the second
smallest eigenvalue of A(G) (the smallest is always zero). Many properties of this
notion have been proved and relations to other connectivity numbers found.

We shall recall just one property of a(G) that a(G) > 0 iff G is connected. It is
clear that G is connected iff A(G) is irreducible.

We shall be interested here in graph-theoretical properties of the eigenvector of
A(G) corresponding to a(G). The coordinates of this eigenvector are assigned to the
vertices of G in a natural way and can be considered as valuations of the vertices
of G. We shall call this valuation characteristic valuation of G. It is always non-zero
and is determined uniquely up to a non-zero factor if a(G) is a simple eigenvalue of G.

To obtain more general results, we shall investigate valuated graphs, i.e. graphs
to each edge (i, k), i + k, of which a positive number Cix = C; is assigned. The
generalized Laplacean A¢(G) of this graph will then be defined by

(6) (4(G) x, x) =(l_,k2)e Ecik(xi — %)%,

ie. Ac(G) = (ay) where

Ay = ;= —cy If i+k, (i,k)eE,‘
Ap=a,y;= 0 if i+k, (i,k)éE,

a;; = Z Cik -
k#i,(i,k)eE

The second smallest eigenvalue ag(G) will be analogously called algebraic €0
nectivity of G.
We shall prove first the following lemma:
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EE— |

.. Then there i (3,2) Lemma. Let G = (N, E) be a connected graph valuated by positive ny mbers
h that p, e B, Ci- Then the algebraic connectivity of G is positive and equal to the minimum of
the function
lacean of G (in Z calx; — x,)?
iratic form o{x) = p GBE .
(xi = x)
(i,k),i<k

over all nonconstant n-tuples x = (x;) (i.e. n-tuples which are not of the form
X;=¢ i=1,..,n). The corresponding characteristic valuations y=0)of G
are then those nonconstant n-tuples for which the minimum of o(x) is attained
and for which ¥ y, = 0.
i1

Proof. Since 4.(G)e = 0 and Ac(G) is positive semidefinite, zero is the smallest
eigenvalue of A.(G). Since G is connected, it follows easily from (6) that e is the only
linearly independent solution of (4c(G) x, x) = 0. This means that zero is a simple

1 as the second eigenvalue, all remaining eigenvalues are positive and all eigenvectors which cor-
operties of this respond to these eigenvalues are orthogonal to e. According to the well known
s found. | Courant-Fischer principle [S], the second smallest cigenvalue ag(G) of Ag(G) satisfies
connected. It is
2 culx; = x,)?

. aC(G) L min (i,k)eE
- eigenvector of , x%0,(x,e)=0 .

assigned to the i; x:

of the vertices
ilways non-zero and the minimum is attained for any eigenvector corresponding to ac(G). By the
sigenvalue of G. Lagrange identity

. n n 2
phs, i.e. graphs n Z xiz _ (Z xi> — Z (x,- _ Xk)2
i=1 i=1 (

s assigned. The in

we have, whenever x + 0 and (x,e) =0,

Z Cik(xi - xk)2 Z Cik(xi - xn)z

(i,k)eE =n (i,k)eE

n X; — X 2
.leiz (gc)( ' s
i=

and the right-hand side is invariant with respect to adding a multiple of e to x. The
proof is then easily completed.

(3,3) Theorem. Let G be a finite connected graph with n vertices 1,...,n, to
every edge (i, k) of which a positive number Ci is assigned. Let y = (y,) be a charac-
algebraic con- teristic valuation of G. For anyr =0, let

M(r)={iele,-+r§0}.
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Then the subgraph G(r) induced by G on M(r) is connected.
Proof. Denote by B the symmetric matrix (by), i, k € N, defined by

by, =cy if i*k and (i,k)eE,

b; = — Z bik'
kk*i
Since
—(Bx, x) = Z Cik(xi = xk)z ’
(i,k)eG
we have
B == —Ac(G) .

On the other hand, the off-diagonal part of B being nonnegative, B + ¢l is non-
negative for a sufficiently large o. The eigenvectors of A(G) are identical with
those of B + oI and to the second smallest eigenvalue of Ac(G) corresponds the
second largest eigenvalue of B + ol. By Corollary (2,3), y +re where y is the
vector of characteristic valuation of G, has the property that the submatrix of B + ol
with indices in M(r) is irreducible. Thus, the subgraph G(r) is connected. The proof

is complete.
(3,4) Remark. A4 similar statement can be proved for r < 0 and the set M'(r)
of all those i’s for which y; +r <0.

(3,5) Corollary. Let G be a valuated connected graph with vertices 1, 2,...,1,
let y = (y;) be a characteristic valuation of G. If ¢ is a number such that 0 = ¢ <
< max y; and ¢ + y; for all i then the set of all those edges (i, k) of G for which
y; < ¢ < yformsacutCof G.IfNy = {(keN|y,>cjandN, = {(keN|y <¢}
then N = (N,,NZ) is a decomposition of N corresponding to C and' the bank

G(N,) is connected.

(3,6) Corollary. Let G be a valuated connected graph with vertices 1,2, ..., 1,

let y = (y;) be a characteristic valuation.
If y; + 0 for all ie N the the set of all alternating edges, i.e. edges (i, k) for

which yy; < 0, forms a cut Cof G such that both banks of G are connected.

(3,7) Remark. By Theorem (3,1), the decomposition and the banks ajre in this
case uniquely determined. 1f '
N, ={ieN|y; >0}, N, ={ieN|y; <0}

then N = (N, N;) is the decomposition corresponding to C.
In the following theorem, we shall show that, in this manner, all cuts with con-

nected banks in a connected graph can be obtained.
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(3,8) Theorem. Let G be a connected graph, let C be a cut of G such that both
banks of C are connected. Then there exists a positive valuation of edges of G such
that the corresponding characteristic valuation y = (y;) is unique (up to a factor),
y; % 0 for all i, and that C is formed exactly by alternating edges (as in (3,6))
of the valuation y.

Proof. Let N = (N, N,) be a decomposition of the set of vertices N of G =
= (N, E) corresponding to the cut C. For ¢ = 0, define an n x n symmetric matrix
C(e) as the matrix of the quadratic form

) (C@xd= 3 m-xf+ ¥ (n-xfre ¥ (u-xnp
ieNy,keNy ieN2,keN ieN,keN2 L
(i,k)eE (i,k)eE (i,k)eE

The matrix C(g) is clearly positive semidefinite. For ¢ > 0, the only vector x + 0
for which (C(g) x, x) = 0, is (up to a multiple) the vector e = (1,1, ..., 1)". Thus

for ¢ > 0 the smallest eigenvalue zero is simple and the second eigenvalue 72(€)
is positive, equal to

' (8) min {(C(e) x, x) | x, (x,x) =1, (x,e) = 0} .

Clearly, 7,(¢) is a continuous function of & and y,(0) = 0. For ¢ = 0, the third eigen-
value 75(0) of C(0) is already positive since (C(0) x, x) = 0 iff x is a linear combina-
tion of the vectors z* = (z{"), z® = (z{”’) where

D=1 if keN,, 2# =0 if keN,,
2V =0 if keN,, zP=1 if keN,.

(Here, we used the fact that both banks are connected.) Since 73(€) is also a con-
tinuous function of ¢,

v2(€) < 73(e)

in some open interval I, = (0, ) where n > 0. For e e I; U {0}, there exists, up to
multiplication by —1, a unique eigenvector y(¢) of C(e) corresponding to y,(¢) and
such that (y(e), y(e)) = 1, (y(¢). €) = 0. Since y(e) is that vector for which the
minimum in (8) is attained and y(0) is clearly the vector y = (y;) (determined up
to the sign) where

y; = —|N1|1/2|N2|_”2n~1/2 lf iGNz,
there exists a subinterval I, = (0, &) with 0 < ¢ < n in which the sign of yie) is
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positive for i € N; and negative for 1€ N,. Thus the alternating edges are exactly
those in C. The proof is complete.

(3.9) Let G = (N, E) be a graph with the vertex set N — {1,....n}. Let each
edge (i, k) of G be valuated by a positive number c,. If y = (y,) is a characteristic
valuation and aC(G) the algebraic connectivity of G then

(9) aC(G) Yi= Z c,-,‘('y,- — )fk) forall ieN,

k,(i,k)eE

and also for any subset M = N

(10) a(G) Y yi= ¥ culyi— n).
ieM (i,k)eE
ieM ,k¢M
Proof. (9) follows immediately from Ac(G) y — ac(G) y = 0. If we sum in 9)
over all i e M, we obtain (10) since the terms on the right-hand side for ie M,

k € M cancel.

(3,10) Corollary. Let G be a connected valuated graph with the vertex set N =
={l,..,n}, let y= (v:) be its characteristic valuation. If y; > 0 then there
exists an index j such that (i, j) € E and Yi <y

Proof. Follows immediately from (9) since ac(G) > 0.
We shall investigate now the properties of the characteristic valuation on blocks
of G.

(3,11) Theorem. Let G = (N, E) be a connected graph, y its characteristic valu-
ation. Let k be a point of articulation of G, let Gy, Gy, ..., G, be all components
of the graph obtained from G by removing the vertex k and all adjacent edges.
Then:

() If y, > O then exactly one of the components G; contains a vertex negatively
valuated in y. For all vertices s in the remaining components y, > y,.

(i) If y. = 0 and there is a component G; containing both positively and nega-
tively valuated vertices then there is exactly one such component, all remaining
being zero valuated.

(iii) If y, =0 and none component contains both positively and negatively
valuated vertices then each component G; contains either only positively valuated,
or negatively valuated, or only zero valuated vertices.

Proof. Let first y, > 0. Since > vi = 0, there is a vertex in G with negative value;
ieN

this must be in G, U ... U G,, thus in at least one G;, say G,. To complete the proof

of (i), it suffices to show that for all vertices tin G; U ... U G,, y, > y, since then
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Y > 0 as well. Suppose first that y, < y, for some vertex t in G, U ... U G,. Then
there exists an ¢ > 0 for which y, — &> 0 as well as y, — & = y,. By (3,4), the

- graph G induced by Gon M = {seN | y, < y, — &} is connected. Since k ¢ M, G is
- contained in Gy, U ... U G,; as it contains at least one vertex in G, (with a negative

value), G = G,. However, t€ G, U ... U G, belongs to M, a contradiction. If y, = y,
for some vertex s in G; U ... U G, then by (3,10), there is a vertex ¢ in G for which
(s,t)e Eand y, < y,. Since t #+ k,te G, U ... U G,, a contradiction by the previous

~argument.

Let us consider now the case that y, = 0. For notational convenience, we shall
assume that k = n and that

AG)=A=[A4,0 ...0 ¢]
0 A4, ...0 ¢

..............

- where A; corresponds to vertices in G, i = 0, ..., .

If « is the algebraic connectivity of G then 4 — «f is singular and

(A—al)y=0.
Let

y =1y
y(l)

(r)

y
0

be the conformally partitioned vector of the valuation y; we have thus, I, ..., I
being identity matrices of the corresponding size,

r

(4o — alp) y©@ =0,
(4 — aIy) yV =

Let us distinguish two cases:

@) Some of the components G;, say G,, contains both positively and negatively
valuated vertices. Thus y(® is neither nonnegative, nor nonpositive. By (1,7), it
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follows that A, — al, which has all off-diagonal entries nonpositive is not positive
semidefinite and thus has at least one negative eigenvalue. Consequently, as ’

Ao - alo,

A, —oll

r

is a principal submatrix of 4 — al, and thus has, by (1,2), at most one negative
eigenvalue, all matrices 4; — al;, i = 1, ..., r, are positive semidefinite and thus
belong to K,. Assume y“’ % 0 for an index j, 1 < j < r. Since A4 ; 1s irreducible,
y¥ is by (1,5) either positive or negative. At the same time, ¢; # O since 4 is ir-
reducible. But ¢; < 0 and thus (y”)" ¢; & 0. By Lemma (2,4) applied to the vector

r

(4 — of) = Y s(4; — al;) + (L,1)

i=0

which means that 4 — «f has at least two negative eigenvalues (the other from
Ao — al,), a contradiction. Thus y = 0, ..., y® = 0 as asserted. The proof of (ii)
is complete. :

B) None of the components Gy, Gy, ..., G, contains both positively and negatively
valuated vertices. Let a component (and there is such since y =+ 0), say G, contain
a vertex with a non-zero valuation. Thus y(® % 0 and either y(® > 0, or y® £ 0.
If some coordinate of y‘* were zero then by (1,5), 4o — al, would not belong to Ko
and it would follow as in « that y = 0, ..., y? = 0, a contradiction to ) y; = 0,
y # 0. Thus either @ > 0, or y® < 0. The proof of (iii) is complete. "

To shorten the formulation of the following theorem, we shall say that a path
in a graph G is pure iff it is simple and does not contain more than two points of

articulation of each block of G.

(3,12) Theorem. Let G be a connected graph, y its characteristic valuation. Then
exactly one of the following two cases occurs:
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Case A. There is a single block B, in G which contains both positively and
negatively valuated vertices. Each other block has either vertices with positive valuqg-
tion only, or vertices with negative valuation only, or vertices with zero valuation
only. Every pure path P starting in B, and containing just one vertex k in B,
has the property that the values gt the points of articulation contained in P form
either an increasing, or decreasing, or a zero sequence along this path according
to whether y, > 0, y, < 0 or Yi = 05 in the last case all vertices in P have valye
zero.

Case B. No block of G contains both positively and negatively valuated vertices.
There exists a single vertex = which has value zero and has g neighbour with
a non-zero valuation. This vertex is a point of articulation. Each block contains
(with the exception of z) either vertices with positive valuation only, or vertices
with negative valuation only, or vertices with zero valuation only. Every pure path
P starting in = has the property that the values at its points of articulation either
increase, and then all values in vertices of P are (with the exception of z) positive,
or decrease, and then all values (up to that of z) are negative, or all values in
vertices of P are equal to zero. Every path containing both positively and negatively
valuated vertices passes through z.

Proof. The cases A and B clearly exclude each other. That both can occur, show
the examples of graphs with the matrix

B

and characteristic valuation (1, — 1)" (case A) and with the matrix

I —1 0
-1 2 -1
0 -1 1

and valuation (1, 0, — )" (Case B).

Thus let G be a connected graph, y its characteristic valuation. Let first G contain
a block B, with positively as well as negatively valuated vertices. If G has the only
block B,, we are finished. If not, let B, be a block different from B,. Then there
exists a point of articulation k which is contained in B, and separates B, from B,.
Let Gy, G, ..., G, be all components of the graph obtained from G by removing the
vertex k and the edges adjacent to k, G, containing the remaining vertices from By, G,
the remaining vertices from By. If y, > 0, it follows from (i) of Theorem (3,11)
that all vertices in G, (and thus in B,) have positive values. If Yie = 0, it follows from
(ii) of the same theorem that all vertices in G,. and thus B,, have value zero. If
Yk < 0, the valuation = is also a characteristic valuation and we may apply (1)
of (3,11) to this case and complete the proof of the first part of Case A.
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Let now P be a pure path, let k be the only vertex of P in By and k, k,, ka, ..., k;
be all points of articulation in P ordered along the path P. Let first y, > 0. By
Theorem (3,11), y;, > yi. If we apply the same Theorem to the point of articula-
tion k; where j satisfies 1 = j <'s, we obtain from (i) that Yijer > Vayr This proves
that the sequence Y, Yi,» Vs - - -» Vi, increases. If y, <0, this last result applied to —y
yields that this sequence decreases. If y, = 0, it follows from (i) of Thm. (3,11)
that even all vertices of P have value zero. The case A is settled.

Let now no block contain both positively and negatively valuated vertices. Let us

prove first:

Proposition. Let a path P contain a vertex with positive value as well as a vertex
with negative value. Then P contains a vertex with zero value such that one its
neighbour has a non-zero value.

Proof. Follows immediately from the fact that in this case there is no edge in G
one vertex of which has a positive value and the other a negative value.

Since y + 0 and ¥ y; = 0, there is such path P in G, and thus such a vertex z
ieN

with y, = 0 and a neighbour with a non-zero valuation. By (9), z must have neigh-
bours with positive as well as negative valuation. Since these cannot belong to the
same block, z is a point of articulation of G. It follows then from the properties in (ii)
of Thm. (3,11) that the case (iii) in this theorem occurs. Consequently, no other vertex
can have value zero and neighbours with a non-zero value. This, together with the
Proposition, proves the last assertion. Let now P be a pure path starting in z. It
follows from (iii) in Thm. (3,11) that if this path contains a vertex with a positive
(alternatively, negative) value then all vertices in P, except z, have positive (alterna-
tively, negative) values. Since —y is also a characteristic valuation, we can restrict
ourselves to the first case only. Let z, k;, ks, ..., k, denote all points of articulation
in P in the ordering induced by P. Let j satisfy 1 < j < s. Since y, > 0, we can apply
(i) of Thm. (3,11) to obtain that y, ,, > yi,. The case Bis thus also settled.

(3,13) Corollary. In Case B.of Theorem (3,12), the subgraph Go of G induced
by G on the set of vertices with value zero is connected.

We shall turn now to the case that G is a tree. In this case. the blocks are identical
with edges, every path is pure and Theorem (3,12) together with Corollary (3,13)
yield immediately the following:

(3,14) Theorem. Let T be a tree, y = (v;) its characteristic valuation. Then two
cases can occur: :

Case A. All values y; are different from zero. Then T contains exactly one edge
(p, q) such that y, > 0 and y, < 0. The values in vertices along any path in Twhich
starts in P and does not contain q increase, the values in vertices along any path
starting in q and not containing p decrease.
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Case B. The set N, = {ieN , Yi = 0} is non-void. Then the graph T, induced
by Ton N, is connected and there is exactly one vertex z € Ny having at least one
neighbour not belonging to N,. The values along any path in T starting in z are
increasing, or decreasing, or zero.

Remark. Using more subtle properties of special matrices, proved in [4] one can
prove the following theorem which shows that for valuated trees the characteristic
valuation does not have other properties independent on the valuation of edges:

Let T be a tree (without valuation of edges) with the set of vertices N. Let a be
a positive number, let y,, «-+s Y be real numbers not all equal to zero such that

Y y: =0 and satisfying the following two conditions: (i) If all numbers y; are
ieN

different from zero then there is exactly one edge (p, q) in T such that y, >0,
Yq < 0; for the vertices p and q, the values on any path starting in p and not con-

taining q increase, the values on any path starting in q and not containing p
decrease.

(ii) If the set Ny of vertices with value zero is non-void then the graph T, induced
by T on Ny is connected and there is a single vertex z € N, which has some neighbour

not belonging to N,. The values on any path starting in z either increase, or
decrease, or are all zero.

Then there exists a positive valuation of edges of T such that a is the algebraic

connectivity of T and y is a characteristic valuation of T determined (up to a non-
zero factor) uniquely.

References

[1] W.N. Anderson, Jr., T. D. Morley: Eigenvalues of the Laplacian of a graph. Univ. of Maryland
Tech. Rep. TR—41—45, Oct. 1971.

[2] M. Fiedler, V. Ptik: On matrices with non-positive off-diagonal elements and positive
principal minors. Czech. Math. J. 22 (87) (1962), 382—400.

[3]1 M. Fiedler: Algebraic connectivity of graphs. Czech. Math. J. 23 (98) (1973), 298—305.

[4] M. Fiedler: Eigenvectors of acyclic matrices. Czech. Math. J. 25 (100) (1975), 607—618.

[51 F. R. Gantmacher: Teorija matric. Gostechizdat, Moscow 1953.

[6] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[7]1 R. S. Varga: Matrix iterative analysis. Prentice Hall, 1962.

Author’s address: 115 67 Praha 1, Zitna 25, CSSR (Matematicky ustay CSAYV).

633




